skip to main content


Search for: All records

Creators/Authors contains: "Mecerreyes, David"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Sodium metal batteries are an emerging technology that shows promise in terms of materials availability with respect to lithium batteries. Solid electrolytes are needed to tackle the safety issues related to sodium metal. In this work, a simple method to prepare a mechanically robust and efficient soft solid electrolyte for sodium batteries is demonstrated. A task-specific iongel electrolyte was prepared by combining in a simple process the excellent performance of sodium metal electrodes of an ionic liquid electrolyte and the mechanical properties of polymers. The iongel was synthesized by fast (<1 min) UV photopolymerization of poly(ethylene glycol) diacrylate (PEGDA) in the presence of a saturated 42%mol solution of sodium bis(fluorosulfonyl)imide (NaFSI) in trimethyl iso-butyl phosphonium bis(fluorosulfonyl)imide (P111i4FSI). The resulting soft solid electrolytes showed high ionic conductivity at room temperature (≥10−3 S cm−1) and tunable storage modulus (104–107 Pa). Iongel with the best ionic conductivity and good mechanical properties (Iongel10) showed excellent battery performance: Na/iongel/NaFePO4 full cells delivered a high specific capacity of 140 mAh g−1 at 0.1 C and 120 mAh g−1 at 1 C with good capacity retention after 30 cycles. 
    more » « less
  2. Abstract

    Implantable electrophoretic drug delivery devices have shown promise for applications ranging from treating pathologies such as epilepsy and cancer to regulating plant physiology. Upon applying a voltage, the devices electrophoretically transport charged drug molecules across an ion‐conducting membrane out to the local implanted area. This solvent‐flow‐free “dry” delivery enables controlled drug release with minimal pressure increase at the outlet. However, a major challenge these devices face is limiting drug leakage in their idle state. Here, a method of reducing passive drug leakage through the choice of the drug co‐ion is presented. By switching acetylcholine's associated co‐ion from chloride to carboxylate co‐ions as well as sulfopropyl acrylate‐based polyanions, steady‐state drug leakage rate is reduced up to sevenfold with minimal effect on the active drug delivery rate. Numerical simulations further illustrate the potential of this method and offer guidance for new material systems to suppress passive drug leakage in electrophoretic drug delivery devices.

     
    more » « less